Factorizations of complete multipartite hypergraphs

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cyclic partitions of complete nonuniform hypergraphs and complete multipartite hypergraphs

A cyclic q-partition of a hypergraph (V,E) is a partition of the edge set E of the form {F, F , F θ 2 , . . . , F θ q−1 } for some permutation θ of the vertex set V . Let Vn = {1, 2, . . . , n}. For a positive integer k, ( Vn k ) denotes the set of all k-subsets of Vn. For a nonempty subset K of Vn−1, we let K n denote the hypergraph ( Vn, ⋃ k∈K ( Vn k )) . In this paper, we find a necessary an...

متن کامل

Bipartite 2-Factorizations of Complete Multipartite Graphs

It is shown that if K is any regular complete multipartite graph of even degree, and F is any bipartite 2-factor of K, then there exists a factorisation of K into F ; except that there is no factorisation of K6,6 into F when F is the union of two disjoint 6-cycles.

متن کامل

Sharply Transitive 1-Factorizations of Complete Multipartite Graphs

Given a finite group G of even order, which graphs Γ have a 1−factorization admitting G as automorphism group with a sharply transitive action on the vertex-set? Starting from this question, we prove some general results and develop an exhaustive analysis when Γ is a complete multipartite graph and G is cyclic.

متن کامل

Hamilton Cycle Rich 2-factorizations of Complete Multipartite Graphs

For any two 2-regular spanning subgraphs G and H of the complete multipartite graph K, necessary and sufficient conditions are found for the existence of a 2-factorization of K in which (1) the first and second 2-factors are isomorphic to G and H respectively, and (2) each other 2-factor is a hamilton cycle, in the case where K has an odd number of vertices.

متن کامل

Fair 1-Factorizations and Fair Holey 1-Factorizations of Complete Multipartite Graphs

A k-factor of a graph G is a k-regular spanning subgraph of G. A k-factorization is a partition of E(G) into k-factors. Let K(n, p) be the complete multipartite graph with p parts, each of size n. If V1, ..., Vp are the p parts of V (K(n, p)), then a holey k-factor of deficiency Vi of K(n, p) is a k-factor of K(n, p)− Vi for some i satisfying 1 ≤ i ≤ p. Hence a holey k-factorization is a set of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2017

ISSN: 0012-365X

DOI: 10.1016/j.disc.2016.08.007